Copied to
clipboard

G = C32×F7order 378 = 2·33·7

Direct product of C32 and F7

direct product, metabelian, supersoluble, monomial, A-group

Aliases: C32×F7, D7⋊C33, C7⋊(C32×C6), (C3×C21)⋊7C6, C212(C3×C6), (C3×D7)⋊C32, (C32×D7)⋊3C3, C7⋊C3⋊(C3×C6), (C3×C7⋊C3)⋊4C6, (C32×C7⋊C3)⋊3C2, SmallGroup(378,47)

Series: Derived Chief Lower central Upper central

C1C7 — C32×F7
C1C7C21C3×C21C32×C7⋊C3 — C32×F7
C7 — C32×F7
C1C32

Generators and relations for C32×F7
 G = < a,b,c,d | a3=b3=c7=d6=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c5 >

Subgroups: 412 in 112 conjugacy classes, 62 normal (8 characteristic)
C1, C2, C3, C3, C6, C7, C32, C32, D7, C3×C6, C7⋊C3, C21, C33, F7, C3×D7, C32×C6, C3×C7⋊C3, C3×C21, C3×F7, C32×D7, C32×C7⋊C3, C32×F7
Quotients: C1, C2, C3, C6, C32, C3×C6, C33, F7, C32×C6, C3×F7, C32×F7

Smallest permutation representation of C32×F7
On 63 points
Generators in S63
(1 43 22)(2 44 23)(3 45 24)(4 46 25)(5 47 26)(6 48 27)(7 49 28)(8 50 29)(9 51 30)(10 52 31)(11 53 32)(12 54 33)(13 55 34)(14 56 35)(15 57 36)(16 58 37)(17 59 38)(18 60 39)(19 61 40)(20 62 41)(21 63 42)
(1 15 8)(2 16 9)(3 17 10)(4 18 11)(5 19 12)(6 20 13)(7 21 14)(22 36 29)(23 37 30)(24 38 31)(25 39 32)(26 40 33)(27 41 34)(28 42 35)(43 57 50)(44 58 51)(45 59 52)(46 60 53)(47 61 54)(48 62 55)(49 63 56)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63)
(1 15 8)(2 18 10 7 19 13)(3 21 12 6 16 11)(4 17 14 5 20 9)(22 36 29)(23 39 31 28 40 34)(24 42 33 27 37 32)(25 38 35 26 41 30)(43 57 50)(44 60 52 49 61 55)(45 63 54 48 58 53)(46 59 56 47 62 51)

G:=sub<Sym(63)| (1,43,22)(2,44,23)(3,45,24)(4,46,25)(5,47,26)(6,48,27)(7,49,28)(8,50,29)(9,51,30)(10,52,31)(11,53,32)(12,54,33)(13,55,34)(14,56,35)(15,57,36)(16,58,37)(17,59,38)(18,60,39)(19,61,40)(20,62,41)(21,63,42), (1,15,8)(2,16,9)(3,17,10)(4,18,11)(5,19,12)(6,20,13)(7,21,14)(22,36,29)(23,37,30)(24,38,31)(25,39,32)(26,40,33)(27,41,34)(28,42,35)(43,57,50)(44,58,51)(45,59,52)(46,60,53)(47,61,54)(48,62,55)(49,63,56), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63), (1,15,8)(2,18,10,7,19,13)(3,21,12,6,16,11)(4,17,14,5,20,9)(22,36,29)(23,39,31,28,40,34)(24,42,33,27,37,32)(25,38,35,26,41,30)(43,57,50)(44,60,52,49,61,55)(45,63,54,48,58,53)(46,59,56,47,62,51)>;

G:=Group( (1,43,22)(2,44,23)(3,45,24)(4,46,25)(5,47,26)(6,48,27)(7,49,28)(8,50,29)(9,51,30)(10,52,31)(11,53,32)(12,54,33)(13,55,34)(14,56,35)(15,57,36)(16,58,37)(17,59,38)(18,60,39)(19,61,40)(20,62,41)(21,63,42), (1,15,8)(2,16,9)(3,17,10)(4,18,11)(5,19,12)(6,20,13)(7,21,14)(22,36,29)(23,37,30)(24,38,31)(25,39,32)(26,40,33)(27,41,34)(28,42,35)(43,57,50)(44,58,51)(45,59,52)(46,60,53)(47,61,54)(48,62,55)(49,63,56), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63), (1,15,8)(2,18,10,7,19,13)(3,21,12,6,16,11)(4,17,14,5,20,9)(22,36,29)(23,39,31,28,40,34)(24,42,33,27,37,32)(25,38,35,26,41,30)(43,57,50)(44,60,52,49,61,55)(45,63,54,48,58,53)(46,59,56,47,62,51) );

G=PermutationGroup([[(1,43,22),(2,44,23),(3,45,24),(4,46,25),(5,47,26),(6,48,27),(7,49,28),(8,50,29),(9,51,30),(10,52,31),(11,53,32),(12,54,33),(13,55,34),(14,56,35),(15,57,36),(16,58,37),(17,59,38),(18,60,39),(19,61,40),(20,62,41),(21,63,42)], [(1,15,8),(2,16,9),(3,17,10),(4,18,11),(5,19,12),(6,20,13),(7,21,14),(22,36,29),(23,37,30),(24,38,31),(25,39,32),(26,40,33),(27,41,34),(28,42,35),(43,57,50),(44,58,51),(45,59,52),(46,60,53),(47,61,54),(48,62,55),(49,63,56)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63)], [(1,15,8),(2,18,10,7,19,13),(3,21,12,6,16,11),(4,17,14,5,20,9),(22,36,29),(23,39,31,28,40,34),(24,42,33,27,37,32),(25,38,35,26,41,30),(43,57,50),(44,60,52,49,61,55),(45,63,54,48,58,53),(46,59,56,47,62,51)]])

63 conjugacy classes

class 1  2 3A···3H3I···3Z6A···6Z 7 21A···21H
order123···33···36···6721···21
size171···17···77···766···6

63 irreducible representations

dim11111166
type+++
imageC1C2C3C3C6C6F7C3×F7
kernelC32×F7C32×C7⋊C3C3×F7C32×D7C3×C7⋊C3C3×C21C32C3
# reps1124224218

Matrix representation of C32×F7 in GL7(𝔽43)

6000000
0100000
0010000
0001000
0000100
0000010
0000001
,
6000000
03600000
00360000
00036000
00003600
00000360
00000036
,
1000000
00000042
01000042
00100042
00010042
00001042
00000142
,
42000000
00000360
00036000
03600000
00000036
00003600
00360000

G:=sub<GL(7,GF(43))| [6,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[6,0,0,0,0,0,0,0,36,0,0,0,0,0,0,0,36,0,0,0,0,0,0,0,36,0,0,0,0,0,0,0,36,0,0,0,0,0,0,0,36,0,0,0,0,0,0,0,36],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,42,42,42,42,42,42],[42,0,0,0,0,0,0,0,0,0,36,0,0,0,0,0,0,0,0,0,36,0,0,36,0,0,0,0,0,0,0,0,0,36,0,0,36,0,0,0,0,0,0,0,0,0,36,0,0] >;

C32×F7 in GAP, Magma, Sage, TeX

C_3^2\times F_7
% in TeX

G:=Group("C3^2xF7");
// GroupNames label

G:=SmallGroup(378,47);
// by ID

G=gap.SmallGroup(378,47);
# by ID

G:=PCGroup([5,-2,-3,-3,-3,-7,8104,2709]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^3=c^7=d^6=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^5>;
// generators/relations

׿
×
𝔽